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HIERARCHICAL FINITE ELEMENT APPROACHES,
ERROR ESTIMATES AND ADAPTIVE REFINEMENT

O.C. Zienkiewicz, *D.W. Kelly,* J. Gago and + I.Babu~ka

Department of Civil Engineering, University College
of Swansea, U.K., +Institute for Physical Science and

Technology, University of Maryland, U.S.A.

1. INTRODUCTION

Despite a continuing effort to identify optimal finite ele-
ment grids most of the finite element computations today still
rely on an a-priori mesh design based on the user's intuition and
experience. Once the mesh is designed, however, there seems to
be growing evidence that high order isoparametric elements pro-
vide a better refinement process than mesh subdivision.
-)-This paper is concerned with the identification of the dis-
cretization error in finite element solution and the definition
of optimal refinement processes. The advantages and limitations
of the hierarchical approach 5 will be discussed and
it will be shown how the intelligent enrichment of the finite
element grid can be left to the computer if a capacity for
a-posteriori error estimation exists within the finite element
code.(1-14, 37-40, 46-49].

2. HIERARCHICAL FINITE ELEMENTS

2. 21 Hierarchical Shape Fznctions

The concept of hierarchical finite elements dates from 1970
and these were first introduced [58] with the objective of crea-
ting elements that would allow an easy transition from a region
where a finite element solution required a high degree of refine-

ment to a region where a lower degree of refinement was sufficient.
Other advantages soon become apparent and it will be shown here
that the hierarchical concept is very powerful in allowing an
error indication capability that can be used for adaptive mesh

refinement [36-39, 46-49].
We will begin by defining hierarchical finite elements as

those in which successive refinements are additive in the manner
of additional terms in a Fourier series. It follows that the
"stiffness" matrix corresponding to the hierarchical element at
a certain level of refinement is a sub-matrix of the "stiffness"



matrix corresponding to a higher level of refinement.
This leads to matrix approximation equations of the type:

KII + q1 
= 0 (2.1)

and L K 
2

K1 
{a(2)

11 12 J li
K K 22 (2) 2(2.2)

21 22S

where (2.1) is the finite element equilibrium equation correspon-
.ding to a certain formulation, and equation (2.2) is the same
equation corresponding to a higher order or refinement. The
matrices KII and qI remain unchanged.

Consider solving the linear differential equation

A(4) 2 L + q = 0 in £2 (2.3)

with boundary condition

B( ) 2 L E + s = 0 on r (2.4)

where F is boundary of £2.
Approximate the solution of (2.3) (2.4) by the solution

P in the form
M

= aN (2.5)
m=l mm

with a proper choice of the basis function N., i =1,2 ..,m.

The coefficient am will be determined from the condition
that

SWe [L$+ q]dQ +J [L--+ sjdF = 0 (2.6)
£ F e

holds for all We and We, where We and We are functions suit-
able for the problem (2.3) (2.4). In addition (2.6) is meant in
a generalized way so that it can be used even if LNi does not
exist in a classical sense (see [59]).

The p-version of the finite element method is defined for
a sequence of solutions as the enrichment of the trial and test
function set through the introduction of shape functions Nm cor-
responding to higher order polynomial degree, p, while the h
version is defined as the approach equivalent to the reduction
of the finite element mesh size h, maintaining constant the
polynomial order [8-9, 46-49].

In 1-D the p-version of the finite element method involves

2



II

the addition to the linear element of quadratic, cubic, etc. trial
functions as shown in Figure 1. Considering the trial functions

expressed as a function of the local element coordinates with
-I ~ 1 we may have for the p-version the following hierar-
chical shape functions. For the linear terms

N0  2

N I +E 
(2.7)

1 2

For the quadratic the 'obvious' form will be a quadratic that
goes to zero at points = -1 and = I so that it does not inter-
fere with the a and a coefficients. Thus

N = 1(-I) ( + I ) (2.8)
2

For the cubic and higher order elements the only restriction is
that the shape functions will go to zero at = -1, 1, so

that we write for the p-th order

N = ( -i) ( +i) , p> 2 (2.9)

The above set is obviously not unique and many alternatives are

possible.
A convenient form of hierarchical functions is given in

Peano et al. [381 as

N =I (p -b) b = I if p even
N p b = if p odd (2.10)

where p 2 is the polynomial order.
It is easy to observe now the associated variables have the

meaning of higher derivatives of i i.e.,

a - d p  (2.11)

Although the successive importance of these hierarchical
variables diminishes, the optimal form is one which gives an
orthogonal set of shape functions in relation to the energy inner
product. Such a set of shape functions will be given by integrals
of the Legendre polynomials in the following form

N 0 1 d 2p 1  (2. 12)
p (p -1) ,p-2  p-2

d
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FIG. 1. One-dimensional hierarchical elements for the
p-version of the finite element method
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if the differential equation - + q = 0 is considered.
This set was introduced by Zienkiewicz et al. (58]. Again,

the multipliers have the meaning of a measure of the higher deri-
vatives of at the centre of the finite element. The advantage
of this set of hierarchical functions is that for I-D problems

the coupling between different higher order degrees of freedom is
non-existent. We will discuss this point further in Section 2.2.
We shall also see that this set of hierarchical functions will
play a very important role in the error analysis study.

For the h-version there is also an infinite number of hier-

archical refinement possibilities corresponding to the sub-divi-
sion of the initial element in equal or unequal parts. If we
consider a hierarchical refinement corresponding to Figure 2, we
will have as shape functions

2

N = 2 + (2.13)

N2 2
f-+1 if 0

N - +sl if 0

etc. Considering Figure 2 it is obvious that the physical meaning
of the linear hierarchical variables is a relative displacement
set.

Once the one-dimensional interpolation formulae have been
established the generation of hierarchical shape functions for
rectangular elements is almost trivial as,

a) the corner node functions are simply bi-linear products, and

b) 'hierarchical' functions of the type defined above are always
zero at the corner nodes.

Polynomial shape functions of all orders in two dimensions can be
obtained by simple products of the one-dimensional formulae, but
in general losing the properties of the orthogonality mentioned
above. The identity of hierarchical variables on any element side
with those on the adjacent element then automatically guarantees
the uniqueness of the polynomial along that side.

The three-dimensional case and the triangular based finite
elements are just special cases of the concepts expanded above
and we direct the interested reader to [36, 62].

The hierarchical and non-hierarchical shape functions for
the h and p versions of the finite element method are presented
in Figure 3 and Figure 4 for two-dimensional problems. It is easy
to show that a direct transformation rom the hierarchical to the
non-hierarchical formulation and vice-versa is possible. For

example, it is possible to transform a quadratic serendipity

15
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element to hierarchical form by a matrix transformation after
the non-hierarchical matrix has been determined. It should also
be noted that when the refinement is to the same order in Figures
1 to 4, the finite element solution + in (2.5) from the hierar-
chic and non-hierarchic formulations will be identical.

2.2 Advantages of HiearchicaZ Fornulations

In 1-D the advantages of a hierarchical formulation over a
non-hierarchical one are obvious because we can obtain a system
of equations of the form

K K 0 0 0 . 0 a r
11 12 -1 21

2 1K 2 2  0 0 0 0 a2 2

0 OK 330 0 . 0 a 1
33 3 + - 0 (2.14)

K44 0 0 aK4 94

o0 0 0 0OK 55 0 a 5 5

0 0 0 0 0 K a
nn- -n

where Kii are diagonal matrices if the functions are of a
suitable orthogonal form. This implies an improved conditioning
of the assembled system of equilibrium equations, compared to the
non-hierarchical formulation which does not have the same strong
diagonal character and, secondly, the possibility of a direct
solution for the hierarchical variables.

In 2-D we expect the same advantages to hold although the
system of equations is now not completely orthogonal and has the
form

F Kl I K 12 21

K2 1  K22 _2 2

The first advantage noted above is carried to the two-
dimensional case by the fact that for each element the condition-
ing of the hierarchical stiffness matrix is better than the
conditioning of the non-hierarchical one. The off-diagonal links
are weakened, implying an overall better conditioning of the
resulting system of equations. This is in fact observed by num-
erous authors [30. 53-S6], who have proved that a relative dis-
placement formulation of the finite element method yields better
conditioned matrices than the classic total variable approach.
Indeed, the same can be said of so-called local-global element
forms.

7



In relation to the second advantage we can say that the
hierarchical formulation is optimal because it allows for all the

information to be passed from one discretization level to the
second discretization level once a mesh refinement is decided.
Also the implicit substructuring existent in this multi-level
formulation allows for the very effective use of block iteration

solution schemes. This, associated with the better conditioning
ot the overall system, will imply a fast rate of convergence for
the iterative equation solver. Wachspress two-level elements

[54] are another way of achieving these objectives although on a
two-level theory, rather than a multi-level one. See also the
local-global formulation of Mote [30] as another possible form
of hierarchical formulation.

3. ERROR ANALYSIS (A HIERARCHICAL APPROACH)

The function $ of the form (2.5) is not in general the
exact solution of the problem. Therefore we cannot, in general,
have

L $ + q = r 'EO (3.1)

L + s = =_ 0 (3.2)

(if (3.1) (3.2) would be satisfied, we would have )
Assume for simplicity that (3.2) (i.e. P = 0) holds; then

r 0 0. Function r usually (e.g. if L is a second-order equa-
tion and N i have not continuous derivative) can be written in
the form

r = rI + r2  (3.3)

where r1 is the (usual) regular part of the residuum inside
every element and r2 is the singular part (Dirac) function con-
centrated on the interface between elements with physical inter-
pretation of concentrated forces whose origin is indicated in
Figure 5.

Considering e.g. equation

0q = O (O) = !(L) = 0 (3.4)

and using piecewise linear elements (as in Figure 5) we get the
regular part

rI = q

and the singular part r2 are the forces (Dirac function) concen-
trated at the nodal point with the magnitude of the jump of the
derivative of the approximate solution on the given nodal point.

For the potential )roblem in two dimensions the Dirac function
is concentratecl on the element interface and has the magnitude

r8
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we i=1,2 is the normal derivative on the left and rightwhere -ff

side of the interface. In the case of elasticity, Js is the
traction discontinuity between elements.

3.1 Error Dej t -orn in the Energy Norm

Denoting e = -4$, the error of the finite element solution,

then obviously subtracting (2.3) (3.1) and (2.4) (3.2) we get

Le =-r

Le = -p (3.5)

and we assume for simplicity as before that 0 =0. The goal is
now to measure the magnitude of e. If the set of the trial

functions and test functions is the same, then for a suitable
class of linear problems we can define

Sell E = [e Le d2] =[ ( -) L(¢-¢dO. (3.6)

the so-called energy norm, and through it we can measure the
magnitude of e.

dX

d X

FIG.5. Interface residuals for error analysis.
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Expanding Hlell we have

e f = Lttd + JL dQ - L d '- (3. 7)

Note that by equation (2.6) with W e we can writee

T L dP = - q dQ (3.8)

and by equation (2.3) Lj) = -q. Substituting in (3.7),2
II elE = - (L + q) dQ (3.9)

or [e!I = -2 r dQ (3.10)

Using once more (2.6) and (3.8) we get

S r d =0 (3.11)

so we can write

2

11ell E = - ( -) r dP (3.12)

or I1el E = -e r dQ where e=s- * (3.13)

We remark that (3.11) has a sense of a self equilibration of
the residual forces.

3.2 .rror i':-- oy'Z

We now comc to the crux of the matter. How can we estimate
the error using expressions such as (3.12) without knowledge of 4?

It is clear that what is needed is an approximation to ¢ (or
e) on a local base because St.Venant's Principle ensures the
effect of the equilibrating residuals will be local.

Employing hierarchical modes provides one possibility. On
every element Ij we set

-+ Ni+ 1  ai+ I  (3.1!4)

where Ni+l is the (as yet not used) next hierarchical shape

function. Now we could write

10
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I2
IeE -a N. r dQ (3.15)

E (I. i~l ''

where 11 1 IE(Ij )  is the norm of the error of the element Ij.

This process obviously needs an estimate of ai+ I.

In one dimension, when we choose as shape functions poly-
nomials whose derivatives are orthogonal, we have from (2.14)

qi+l 
(3.16)a i+ I  K Ki+l,i+l (.6

Here qi+l can be determined from

qi+l=fNi+ q dQ = fNi+l (r- Lg'd =N i+1 r dQ(3.17)

because JNi 1 L dQ = 0 due to the orthogonality referred to

above.. Now (3.11) can be written as

(qi )2
eU2  i+1 

(3.18)
E(lj )  Ki+li+l

which is the error indicator presented in [37,40].
When the shape functions do not possess a complete orthogon-

ality a degree of approximation has to be introduced here.
First, ai+ I has to be estimated using the previously found aj
values as

a i+l Ki l I  qi+l - Ki+lj a.) (3.19)
i~l~j j

Now =
SNi 1 r dQ - K+ilj a. (3.20)

because

b Ni 1  LQi  dQ # 0 (3.21)

and qi+l is again evaluated from the previously determined a.

These approximations are generally tenable if near orthogonality
of hierarchical functions exists,as is often the case with the
p-type elements.

A more serious shortcoming of this error estimate is how-
ever immediately apparent. If the residual r is orthogonal to
N i+1 in (3.15) the error indication will be zero, since

11!
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SN i+l r dQ2 0 (3.22)

This implies that the proposed criterion leads to an indication
of the error absorbed by a hierarchical refinement on the exist-
ing mesh rather than an accurate estimate of the error in the
finite element solution. Therefore we will denote this simply
as an error indicator and search further for a true error
"estimate".

3.3 Error Estimation "in One Dimension

Such an estimate can be obtained from a simple calculation,
when e= - $is the exact response to r.

Consider the model problem

d2
d 2  q = 0 (3.23)

dx

with boundary condition

¢(0) = 4(L) = 0

with e being the error involved in a linear approximation with
nodal points x.. As in (3.5), we have

i'

2d e
de + r = 0 with e(O) = e(L) = 0 (3.24)

dx2

In addition it can be shown that e(xi) = 0 in our particular case
(e.g. [59]), so e can be determined on every interval Ij =

(xj-il ,xj) separately.

Assuming that r= rsin-f- , then the differential equation

d2e
de + r = 0 e(O) = e(L) = 0 (3.25)dx2

is easily solvable. Substituting e= e sin- in (3.25) we get

_ nTx - . Tix
e sin L r sin-- (3.26)

2 L 2  LL

giving e = 2 r (3.27)

Further on L

12



IL
L rL 2

e - r dx 2 2 d x (3.28)

So far we assumed that r= r sin x In
L general, the resi-

dual will involve many terms and

e "

It can be easily shown that we get (see Appendix)
2 2

11ell' LA dx (3.29)

i.e., we replace equality in (3.28) with inequality in (3.29).
Applying now (3.28) to every interval separately [because
e(xi)=O , it is possible] then we get

2 [ xi)2 fXi+l
, e l (xi+ r dx (3.30)

iT
xi

where xi+ I -x i = h.

The bounding inequality in (3.30) is valid for r of all
orders of polynomial variation in the one-dimensional problem
(3.23) and linear elements. Note, however, that in the limit of
h refinement of the linear elements we expect that r will be
nearly constant on each element. In this limit only, the addition
of a hierarchic quadratic term will give a valid error estimate.
Here we can rewrite (3.14) on every single element I of length h

+ x(h- x) ai+ 1  (3.31)

and
e a 1i+I x(h -x) (3.32)

From (3.24)

r = -2a (3.33)
i+l

and substituting (3.33) in (3.32)

e x(h -x) (3.34)

Then h 2 3

. .e r d' x(h-x) dx= h---- (3.35)
E(1) 0 12

C 13



l

Note that (3.32) will give the same measure of the error for con-
stant r if the factor r2 is changed to 12. We therefore imple-
ment

x

IIeII E  = I- 2 i r 2 dx (3.36)

x.
1

as the asymptotically correct error estimator for linear elements
and one-dimensional problems. This is indeed the form presented

by Babu'ska et al. [4-6] where a different and detailed mathemati-
cal justification is given.

3.4 Error Indication and Estimation in TwoDimen",. "s

In two dimensions the hierarchical functions have their
support on either one or two elements, as shown in Figure 6.
Again we can use the hierarchical modes to make a total projec-

tion as in (3.15). We note, however, that in two dimensions the
hierarchical contributions to K are not diagonal as in the I-D
equation, and the approximation of (3.19) has to be used, i.e.

[qi4l + Ki+l 1 j a.] (3.37)
i+l K i+l,i+l

(for j# i+l and summation convention) then
2

2)i 
=  [qi+l + K i ~ ' a .1 23 38

11 eli~l (i+l,3.38)

where the subscript i+l refers to the new hierarchic mode.

(b)

FIG.6. Hierairchical supports for two,-dimensionail Qrror ,1111l',-sis.

14
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Note that if we sample each hierarchical mode independently
(set other hierarchical amplitudes ai= 0) then the interaction
of the new modes in the solution is ignored, introducing a new
approximation in addition to the problem of this error indicator

being a projection of the true error in the next hierarchical
mode and not the total error. The effect of this new approxima-
tion cannot be evaluated a-priori.

To estimate the total error we will take some guidance from

the hierarchic nodes in Figure 6 but attempt to base the analysis
on the theory developed for the one-dimensional case. The hier-
archic modes indicate that not only must we consider the contri-
bution from the residual on the element (regular part of the
residual) but also the contribution from the interface (singular
part of the residual). In one dimension only the former was con-
sidered because the hierarchic nodes were all internal to the
element.

Consider first the regular part of the residual on the ele-

ment. We will over-estimate the error associated with the hier-
archic node in Figure 6a by releasing boundary conditions to give
two one-dimensional responses (see Figure 7a) and associating
half the residual in each direction. In each direction (3.30)
gives

h
I ~ e l l ( 1  ) 5 

2

e 2 () dQ (3.39)

so that the addition of both one-dimensional contributions gives

2 2f

ell 2  h r2 dQ (3.40)
E ?'2 Q

The influence of the .ingular part of the residual can be
treated in the same way it the residual is distributed as indi-
cated in Figure 7b. Now we have

J
s--(3.41)

and (3.30) gives

E2 2 r '

e h! frs

-2 d.

h h2
7TTh

h F 2 dy. 42)

15
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h -

h h
b)

hx

-, ,

linear element

2 h 2 h d. h • .)Ie I 2 2Q r2 dP + s ?(..3
E2 2

Since this derivation is based on a superposition of one-
dimensional analyses we should obtain the one-dimensional estiante
if the boundary conditions impose essentially a one-dimensional
problem on the two-dimensional mesh. Using (3.43) and constant
rilght-hand side q in (2.3) we get an estimate which is not co.b-
plately identical with the one-dimensional estimatc. Therefore
we reduce the estimate by modifying (3.43) to

2h 2 - 2 2lel (r -r d . ( J dU (3.4)
°" 2<, It. 2i,- J.'• s |

272

£ 16



where r is the mean value of the residual on the element. This

form is mathematically justified in [2].
It follows that on the entire domain we get

iellE < r-) 2 dQ+ - J2 dJ (3.45)

i 2r i 2T2 f. s

where the sum is taken over all elements Q. and r . (if J at

the boundary Pi is properly defined).
We derived these estimates under various assumptions. The

question arises whether they are acceptable. The answer is posi-

tive (see for example Babuska et al. [2,7] ).There the term 1/ 2

is replaced by 1/12 to obtain the asymptotically correct

estimate

e E 4 er-. 2 do + T4 f, d (3.46)
i 1 1

The estimate has essentially two parts. The one related to

the regular part of residual (volume integral) and the other one

to the singular part of the residual (jump of derivatives term).

It can be theoretically shown that the first term (volume inte-

gral) is in the limit negligible with respect to the second one.

Practical experience shows that the first term is relatively

small also for coarse meshes.

The estimate is ca lled asymptotica ll correct
when the ratio of the right and left-hand side of (3.46) goes to

one as the error goes to zero. The estimate (3.46) has this pro-

perty when some mathematical assumptions are satisfied. One

major one is that the element error estimators are about the same

in magnitude. This can be achieved e.g. by an adaptive selection

of the elements. The experience shows e.g. that the asymptotical

correctness is not achieved when the solution has singular behav-

iour and a uniform (obviously improper) -iesh is used.

3.5 PracticaZ Error Analysis

Both the estimators (3.36) and (3.43) and the indicators

(3.18) and (3.38) can play a fundamental role in the finite ele-

ment analysis. The estimators allow for an evaluation of the

total error in energy in the current finite element solution and

the indicators allow a rational increase of degree of the element

(made in a hierarchical way) and/or element subdivision.

The latter is a direct c ansequence of the hierarchica 1
error indicators being a projection of the error in the new hier-

archical modes, reflecting thus the capacity for the new modes to
'absorb' error in energy. In addition, the possibility of obtain-

ing an accurate estimate of the error in an appropriate norm

allows the program to stop automatically when a certain accuracy

|17



has been achieved or to indicate the order of accuracy when a
certain pre-specified solution cost has been attained.

It seems, however, that to obtain both advantages we have
not only to compute all the residuals and stress discontinuities
at every stage of the interation process to evaluate the esti-
mate (3.46), but also all the hierarchical stiffness coefficieits
corresponding to the possible new refinements to evaluate the
indicator (3.38). This is not necessarily the case, since the
error indicators can be obtained as projections of the computed
residuals and stress jumps in the new hierarchical modes, i.e.
in (3.38)

qj +K.. a.

1 l

w her J s d
f i 1 Q22i fT /2 3

where Q ' Q2' and r 1/2 and Js, are indicated in Figure 7b. This
computation can be achieved locally.

3.5.1 Requirements for Practical Error isti-nates. We consider
that a practical error estimator should satisfy the following
conditions:

a. Be determined a-posteriori from information defined on a
local basis. iLelE

b . If we define an effectivity index e =exact (i.e.

ex)act

the ratio of the predicted energy norm of the error to the
exact value of this norm), then we require e > I for all
meshes, and to provide reasonable bounds i : e ,, 2.

c. Asymptotic convergence , -1.

d. A direct interpretation of errors in stresses should be
available.

In the examples that follow we show that error estimates
which satisfy these criteria are available from the estimators
of the form (3.36) and (3.46) if the following amendments are
incorporated:

1. Theorem 2 of [7] states that there exist constants k,, k> 0
independent of the mesh, such that

kIII ellE" el act

with 'e E given by (3.4h). Ex.periencu has shown k 0. 5 and
k 2  I .q Son a large number of problems, and both are asvmptoti-

j 18



cally equal to 1 for uniform meshes and smooth solutions. To
prevent gross violation of the second condition required of the
error estimates we seek a value of k by defining a factor k
for element i as

k2 i = l a ( I (3.47)

where

hJ KE u (3.48)1 K(Q i) th)

is the energy on the i-th finite element. The corrected error
estimate becomes

IIeh .I k2 I I el (3.49)
(Q *) (i

We have taken a =2 in all applications.

2. For isoparametric transformation of the element there is
more than one possible choice for the length parameter h.
Following [191 and because we seek an over-estimate of the error
in the solution, we choose h as the length of the maximum side
of the element.

3. Error estimators have not been developed for elements of
higher order than linear. However, significant work is being
done in this area by Szabo and his co-workers [46-49].

The sine function analysis affords the following extension.
Quadratic elements would match the predominant part of the

error in the first sine function i= 1, used for linear elements.
Assuming now the error in the form of the sine function with i=2
we would replace the coefficient

h2  h 2

2 by 2 (3.50)2i2  nIT

with n= 8. For the cubic element we could progress to the mode
i =3 to get the coefficient with n= 18.

Thus with changing polynomial order p on the elements the
coefficient of the estimator can be replaced by

22

2r, 2 t2
It is to be noted however, that this assumes that quadratic
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interpolants, for example, can completely eliminate error in the
form of the first sine function. This of course is not the case
so the factor above would be optimistic.

Again, in the interest of producing an over-estimate of the
error in the solution, we reduce the power on p to one so that
a general form of (3.46) for elements of polynomial order p
becomes

Sh 2  r dP + J dF (3.51)
hE ( ri

)  24p .24p F s

Note we relax the requirement B- 1 here in 2. above.

4. The analysis above strictly applies only to the Laplace
operator. However, it can be generalized, for example, to pro-
blems governed by the Navier equations of elasticity. Formula
(3.51) has been found adequate when the influence of Poisson's
ratio has been incorporated. We take

e = C r2 d Q J 2 dF (3.52)

with C -= for plane stress.

5. Local estimates of the error in stress are the elusive goal
of most practical error analysis. It is interesting that the
error estimates advocated here are evaluated locally element-wise
are justified locally by appealing to St.Venant's Principle and
are backed up by a corrective factor which, in a limited number
of experimental problems, ensured local bounds on the energy of
each element.

We can suggest the following: a bound on some average of
the stress on the element will be obtained by scaling local

stresses by a factor FS.
I

e E

FS. =  
(3.53)

1 lUhlE( i

11 VI1

where Hu 11 is the prediction of the energy of the exact
e E(i)

solution on the i-th element evaluated as

u= 1: 21  + (3.56)

E(i) E(. ) 
,i1
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and Iluhil is given by (3.48).

3.6 Applications of t;ze Error Estimators of Section 3.5.

3.6.1 Cantilever with applied end moment, linear elements. The
simple cantilever shown in Figure 8 was analysed for plane stress
using the four-node, bilinear element. The exact solution has a
quadratic variation of vertical displacement along the beam.

The finite elements used are compatible and fully integrated
so the finite element solution uh is known to be stiff. The
error estimate ljejL* does, however, over-estimate the error in

the solution. A comparison of the results also supports the con-
stant C in (3.52) used to include the influence of Poisson's
ratio V . Finally, the moment is constant along the beam in this
simple example so that the stresses in each element are identical
and j1ellE(Qi) from (3.52) is the same for each element. The

error estimates in the table can therefore be interpreted locally
as well as globally, and implementation of (3.53) will obviously
give good estimates of the local error in stress.

The last two columns in the table give the ratios

e x 100 and xeact X 100
Ijuh1I E  lluhfl E

respectively. This measure may provide the best qualitative irzdi-
cation of the accuracy of the finite element stresses.

Note that all calculations between values in these tables
must be based on the formula

I1j 2]i~ 2 2
H + Ilel!I luJ hh! F e1

exact E E

This formula expresses the fact that the error is orthogonal to
the finite element solution.

3.6. 2. Smali cir2.Zar 7:c, h anJ p reffue'cut. The configura-
tion of the problem and the finite element meshes used are shown
in Figure 9. The analysis was for plane stress with v = 0.3. The
results given as Case I in Table 2 are for the bilinear four-node

element and subdivision of all elements into four, as shown in
the figure. In this analysis the surface geometry of the hole
was updated in the refinement. Again, the global error estimates

11e! are excellent.
E
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Indhol mesh Refined mesh

° \

I--

.2 6 20 170

Fig. 9. Small circular hole in large region (not to scale).

TABLE 2

1,3r.7e Plate .',ith Small Circular Ho-e . = C.S

Case 1. Linear Elements (Complete Subdivision)

Error Estimate Error Estimate
No. Elcments Iu.1 ,eE e E e.

2- 1.15-481 .583 x 10- 2  .85 .700 x 10-2 1.02
9t 1.154829 .343 x 10-2  .51 .:,05 x 10-2 O.9o

"Exac t"
Solution 1.154837 (refined nesh and Richardson extrapolation)

Case 2. Increasing Polyvnomal Order on 2. Element Mesh (No Uodate cf
Hole Surface) (Co--plete Refinement)

Element Error Estimate Error Estimate
Type (p) IiueI i 1eIk +e I 0

Linear (i) 1.154816 .583 x 10-2 .85 .700 x 10-2 1.06
Quadratic 1.15832q- 2  

.93 .297 x 10
-  

1.05
(2) .29783 .264-2

Cubic (3) 1.154834 .162 x 10- 2 .9'. .173 x 10- ' 1.00

"Exact"
Solution 1.154835 (refined uesh and Richardson extrapolation)
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The results given as Case 2 in the table are for a uniform
increase of the polynomial order on all elements based on the
coarse mesh indicated in Figure 9. Here the surface geometry of
the hole has not been updated with refinement. Again, the error
estimates I]eJIE are excellent but the example indicates the
practical weakness of a global error measure. The first column
in the table indicates that the significant error in stresses in
the immediate region of the hole surface appears as only a small
perturbation to the global energy of the region.

Obviously a local measure is required. In Figure 10 we plot
the stress tangential to the hole surface in two elements adja-
cent to the hole. The finite element stress, plotted as a linear
interpolant through the 2x 2 Gauss point values, is scaled using
the factors FSi given by (3.53). The order of the error in the
stresses is accurately indicated even at this local element level.

r

C 0a
2ql

a .
I EXACT SOLUTION

(INFINITE REGION)

2 FINITE ELEMENT
SOLUTION

3 SCALED BOUNDS

I 2 3 4 5 6 I ,0
r

Fig.lO. Local stress errors: t = 8F.i on 2--element mesh.

4. ADAPTIVITY

The concept of adaptivity follows naturally from the previous
discussion as the expansion of the trial function space Sh,
hierarchically or non-hierarchically, but only where the space
is shown to be deficient. It has been taken as a basis for adap-
tivity that the sequence of finite element solutions must follow
the best rate of convergence in terms of the number of degrees of
freedom of the structure. The optimal rates of convergence for
both the h and p versions of the finite element method have
been identified and quantified in [13].

Two programs are being developed for this research. The
first is based on the h convergence process in Babuska 17],
which utilizes Ie E as the indicator for mesh refinement.
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The second p-convergence algorithm uses directly the hierarchical
elements and indicators (3.38).

The strategy for selection of new degrees of freedom in
adaptive processes is not uniquely resolved. Here we refine on
the basis of evaluating all error indicators and including degrees
of freedom whose indicator exceeds one-half of the maximum value
or, in the case of the h-convergence program, subdividing elements
whose indicator exceeds this value. It has been found that the
path followed by the adaptive process is not greatly affected by
changing the one-half factor. However, in practice this choice
may affect the expense of the solution process and alternative
strategies are discussed both by Baburka [7] and Peano [38].

4.1 Examp Ies

4.1.1. CantiZever '-:wit; anrieJ d m:-!_4. The error estimators

IIe11E(Si) are identical on all elements in the first two meshes

shown in Figure 8, so the sequence of results in Table 1 corres-
ponds to a h-adaptive process. The accuracy of the error esti-
mators indicates that an effective stopping criterion on the
basis of the energy norm, stress or displacement, could be defined.

4.1.2. Smai1 hoLe ir large region. Both the h and p adaptive
processes have been applied to the problem defined in Figure 9
and the results plotted on Figure 11. Notice that the convergence
is expressed in terms of number of degrees of freedom and not as
usual in terms of h. In the p-version h remains constant and
a comparison would not be possible. For 2-D elements O(h 2)

0(1/N) so we expect, for example, for linear elements, slopes : I.
The plots in Figure 11 can be divided in two groups: conver-

gence using linear trial spaces (adaptive or non-adaptive), and
convergence using higher order trial spaces. The first group
includes solution extensions nos. 3, 12, 13, 14, and the second
group extensions nos. 2,4, 11, from meshes M1 and M3. Extensions
4, 13,14 are adaptive and the type of meshes obtained are repre-
sented in Figures 12 and 13.

As expected, the rates of convergence are higher for the
second group because of the better convergence characteristics of
higher order finite elements. Within each group the adapaLive
solutions are better because there is an intelligent criterion
to select the new degrees of freedom.

The adaptive p-extension (extension no.4) tends in the limit
to the cubic solution of extension no.2, due to the fact that we
set a limit of complete cubic modes in the adaptive p-convergence
program. This last result shows that a very accurate solution on
p-convergence extensions requi - the use of higher order poly-
nomials. The disadvantage is that this leads to a loss in point-
wise convergence because of the 'noise' associated with the poly-
nomial oscillations.
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3 h - Convergence based on MI, complete refinement,

no geometry updating
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12 h - Convergence based on Ml, complete refinement
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Richardson's extrapolation for error indication
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ment of top 50% of error indicators in the mesh

where Mil - mesh shown in Figure 9

713 - a mesh of six 9-node elements based on Mll

FIG.ll. Experimental rates of convergence for small hole

in large region
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A mixed h and p convergence model could therefore be the
best strategy. In [14] it is proved that the combined versions
produce higher order rates of convergence than either the h or
p-version by itself, indicating that research in this direction
is necessary. We note, however, that the resulting program will
have a very complex structure. In this context we reference the
work done on the h-version [43,57] which by itself presents a
highly complex situation.

The p-convergence programs, on the other hand, have a simpler
structure but nevertheless more elaborate than the usual finite
element codes, since we have to allow for error subroutines,
automatic node generation subroutines, and multi-level finite
element types.

The meshes obtained for the h and p adaptive processes of
Extensions 14 and 4 are given in Figure 12 and 13 respectively.
Similar refinement near the hole is seen in both cases. Finally,
we note from Table 3 that the error estimators for the h adap-
tive process given in Figure 12 are again accurate enough to pro-
vide a stopping criterion. However, in Section 4.1.2 it was

seen that the global energy norm gave little indication of the
accuracy of stresses near the hole surface. The local stress
error estimator discussed in that section may provide a more

practical accuracy test.
Obviously very powerful solution algorithms can be based on

these processes. The efficiency of the hierarchic indicators is
best shown by returning to the cantilever beam of Figure 8 and
considering a tip shear load. The interpolants required on the
interfaces between elements such as AB, in the figure, depends
on the Poisson's ratio. With V =0.0 only cubic interpolants
in the x-direction are required; with V = 0.3 the exact solution
only follows if quadratic as well as cubic interpolants are added
on the interfaces. The adaptive process based on the hierarchic
error indicators is sensitive to exactly these requirements and
the quadratics are left out of the adaptive process for the first
problem.

TABLE 3

Linear Elements (Adaptive Solution - Extension 14)

ErrorEstimate Error Estimate
ndf IlUh E  lellE II ell*

Step 1 60 1.333602 .583 x 10 2 .85 .70 x 10 2 1.02

Step 2 111 1.333616 .428 x 10 .76 .52 x 10 - .92
-9 -9

Step 3 133 1.333625 .382 x 10 - .80 .45 x 10 - .Q4

Step 4 150 1.33362, .355 x 10 - .76 .42 x 10 2 .90

Step 5 182 1.333f29 .323 x 10 2 .74 .38 x 10 2 .87
-9 -9

Step 6 287 1.333639 .2c5 x 10 - .98 .3(1 x 10 I 1.20
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5. CONCLUDING REMARKS

A general description of 'hierarchical' finite elements,

including both h and p versions of the finite element method
has been presented. There are three main advantages of this
approach. Firstly, it leads to improved conditioning of the
stiffness matrix and the topology of the stiffness matrix indi-
cates an efficient partitioning for block iteration solution
procedures. Secondly, compatibility is easily enforced in
meshes with a graded refinement of polynomial order or element
size. Finally, in the new generation of adaptive finite element
schemes higher order hierarchical modes provide an indicator for
the selection of the new degrees of freedom which should be
added to the finite element mesh.

We have also demonstrated in this paper that accurate error
estimators are available and can be interpreted locally at least
for problems with stress concentrations no greater than the cir-
cular hole. Projections of the residuals required for the eval-
uation of these error estimators give the hierarchical indicators
which control the adaptive processes. Naturally, the program
archite.ture becomes complex but processes allowing the accuracy
required of the solution to be pre-specified are within reach.

APPENDIX

PROOF OF THE BOUND OF EQUATION (3.30)

The energy norm of the error is given by

fleflE = -f r e dx (A.1)
0

Take r = ri Sin iT X

2

From (3.24) 9 r
dx"

so that

(L ~ 17TXe r Sin-~Tin r L

Substituting in (A.1)

2lll o - -- L, J r s -j d2~ - r L- . T]F Sin'~-- dx
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but since
Sin -n-- Sin Lx dx 0,

& 0

2 2L is in d

e V-r. Sin -- dx

2O- f d

L2  1L dx

2 
0

ACKNOWLEDGEMENT

J. Gago gratefully acknowledges the support of the Gulbenkian
Foundation, Lisbon, Portugal, Fellowship No. 18/79/B and the
Technical University of Lisbon.

The work of I. Babu'ka was supported in part by the Office
of Naval Research under contract N00014-:77-0623.

REFERENCES

1. BABU9KA, I., The Selfadaptive Approach in the Finite Element
Method, in J.R.Whiteman (Ed.), Mathematics of Finite Elemenrs
and AppZications, Academic Press, London (1975).

2. BABUSKA, I. and MILLER, A., A-Posteriori Error Estimates and
Adaptive Techniques for the Finite Element Method,7ec,.',"-
SN-968, Institute for PhysicaZ Science and 7+'snoiJpy,
University of Maryland, (June 1981).

3. BABU9KA, I. and RHEINBOLDT, W.C., Error Estimates for Adap-

tive Finite Element Computations, Sicw: J.. Vol.15,
No.4 (August 1978).

4. BABUSKA, I. and RHEINBOLDT, W.C., Computational Aspects of

the Finite Element Method, . 5-:,i '. LW, (1d.
J.R.Rice), Academic Press, (1977), 223-253.

5. BABU KA, I. and RHEINBOLDT, W.C., A-Posteriori Error Esti-
mates 'for the Finite Element Method, Tnt.d.;,*v-cr.,.,:1:s.

Engng.,Vol.12, 1597-1615 (1978).

6. BABU§KA, I., Analysis of Optimal Finite Element Meshes in R1 ,

Math.Comput., 30 (1979), 435-463.
7. BABU KA, I. and RHEINBOLDT, W.C., Adaptive Approaches and

Reliability Estimations in Finite Element Analysis, C::i',.
Meths. in Applied 1,echan'ce and Engn., 17/18 (1979), 519-40.

8. BABU9KA, I. SZABO, B.A. and KATZ, I.N., The P-Version of the

Finite Element Method, " Vol.18 (1981),

515-546.

30



I,

9. BABUSKA, I., KATZ, I.N. and SZABO, B.A., Hierarchic Families
for the P-Version of the Finite Element Method, Proc. 3rd
Int.Symp. on Comp.Meths. for Partial Differential Equations,
Lehigh University (1979), 278-286.

10. BABU'KA, I. and RHEINBOLDT, W.C., A-Posteriori Error Analy-
sis of Finite Element Solutions for One-Dimensional Problems,
Siam J.Nurn.Anal., Vol.18 (1981), 565-589.

11. BABUKA, I. and RHEINBOLDT, W.C., Reliable Error Estimation
and Mesh Adaptation for the Finite Element Method, in J.T.
Oden (Ed.), Comput.Meths. in Nonlinear Mechanics, (1980),
67-108.

12. BABU9KA, I., A-Posteriori Error Estimates and Adaptive
Approaches for the F.E.M., Maryland Conference, (March 1980).

13. BABU'KA, I. and SZABO, B.A., On the Rates of Convergence of
the Finite Element Method, Rep. WU/CCM-80/2, Centre for
Comput.Mechanics, Washington University (1980). To appear in
Int.J. Num.Meth. Engng.

14. BABU KA, I. and DOOR, M.R., Error Estimates for the Com-
bined h and p Versions of the Finite Element Method,
Tech. Note BN-95, Inst. for Physical Science and Technology
(1980). To appear in Numerische Mathematik.

15. BASU, P.K. and SZABO, B.A., Adaptive Control in p-Convergent
Approximations, Proc. Z5th AnnuaZ Meeting Soc. of Engng.
Science, Inc. (1978), Gainesville, Florida.

16. BASU, P.K., SZABO, B.A. and TAYLOR, B.D., Theoretical Manual
and Users' Guide for Comet - XA, Rep. WU/CCM-79/2, Centre
for Comput. Mechanics, Washington University (1979).

17. BRANDT, A., Multi-Level Adaptive Technique (MLAT) for Fast
Numerical Solution to Boundary Value Problems, Proc. 3rd
Int.Conf.Nurrer.Meths. in Fluid Mechanics (Paris 1972),
Lecture Notes in Physics, Vol.18, Springer-Verlag, Berlin
and New York, (1973), pp. 8 2-8 9 .

18. BRANDT, A., Multi-Level Adaptive Solutions to Boundary Value
Problems, Maths. )f Co'put., Vol.31, No.138 (1977),333-390.

19. CIARLET, P.G. and RAVIART, P.A., Interpolation Theory over
Curved Elements, with Applications to Finite Element Methods,
Comp. Me-hs. n ApPL.Mec; anics and Fnguza., 1 (1972),217-249.

20. CARROLL, W.E. and BARKER, R.M., A Theorem for Optimum Finite
Element Idealizations, Int.J.Solid 1:ruotrrc, (1973), Vol.9,
883-895.

21. CARROLL, W.E., On the Reformulation of the Finite Element
Method, Int.Symp. on Innovative N mer.A-nal. in A r? Z.Enm-z,-.
Science, Versailles-France (1977).

22. DUNAVANT, D.A., Local A-Posteriori Indicators of Error for
the P-Version of the Finite Element Method, Rcp. WU!CCJ-80 1,
Centre for Co.rut.tM~ochanics, Wash n4toUz . ..:rcS. (1980).

23. FELIPPA, C.A., Optimization of Finite Element Grids by
Direct Energy Search, Avrl."aths. Moi-'(, :.7 (1978), Vol.1.

24. FELIPPA, C.A., Numerical Experiments in Finite Element Grid
Optimizat tion by Direct Energy Search, _.Z .'7.iJ 7n

Vol. 1 1977).

31



'I

25. KELLY, D.W., A Bound Theorem for Reduced Integration and
Error Analysis. Companion paper in this text.

26. KELLY, D.W., Bounds on Discretization Error by Special Red-
uced Integration of the Lagrange Family of Finite Elements,
Int.J.Num.Meths.Engng., Vol.15, 1489-1506, (1980).

27. MELOSH, R.J. and KILLIAN, Douglas E., Finite Element Analysis
to Attain a Pre-specified Accuracy, Proc. 3rd Nat.Congresr
on Computing in Structures (1976).

28. MELOSH, R.J. and MARCAL, P.V., An Energy Basis for Mesh
Refinement of Structural Continua, Int.J.Num.Metk. in Engng.,
Vol.ll, 1083-1091 (1977).

29. MELOSH, R.J., Principles for Design of Finite Element Meshes,
Maryland Conference (1980).

30. MOTE, C.D., Global-Local Finite Element, Int.J.Num.Meth.
Ergng., 3, 565-74 (1971).

31. NICOLAIDES, R.A., On Multiple Grid and Related Techniques
for Solving Discrete Elliptic Systems, J. of Comput.Physics,
19, 418-431 (1976). 2

32. NICOLAIDES, R.A., On the Z Convergence of an Algorithm for
Solving Finite Element Equations, Matks. of Comput., Vol.31,
No.140 (1977), 892-906.

33. NICOLAIDES, R.A., On Some Theoretical and Practical Aspects
of Multigrid Methods, Inst. for Comput.Applcs. in Science
and Engng. (ICASE), NASA Langley Research Centre, Virginia.

Report No.77-19 (1977).
34. ODEN, J.T. and REDDY, J.N., An introduction to the Mathema-

ticaZ Theory of Finite Elements (1976).
35. OLIVEIRA, E.R. de Arantes e, Optimization of Finite Element

Solutions, Proc. 3rd Conf. on Matrix Meths. in StructuraZ
Mechanics, Wright-Patterson Air Force Base, Ohio, (1971),

pp.750-769.
36. PEANO, A.G., Hierarchies of Conforming Finite Elements for

Plane Elasticity and Plate Bending, Comrmt. *.'':' with
Aopls., Vol.2, No.3-4 (1976).

37. PEANO, A.G., PASINI, A., RICCIONI, R. and SARDELLA, L.,
Self-Adapative Finite Element Analysis, F "rc. 1I' mn.
Finite Flcrn7nt Con$'wess, Baden Baden, (1977).

38. PEANO, A., RICCIONI, R., PASINI, A. and SARDELLA, L.,
Adaptive Approximations in Finite Element Structural Analysis,
ISMES, Bergamo, Italy, (1978).

39. PEANO, A. and RICCIONI, R., Automated Discretization Error
Control in Finite Element Analysis, 2lU Worh Lom.'r... Zn

Finite EZ M , Mithods, (1978).
40. PEANO, A., FANELLI, M., RICCIONI, R. and SARDELLA, L.,

Self-Adaptive Convergence at the Crack Tip of a Dam Buttress,
Int. Cnf. on Numcr.Ml'the. :*n Free z e' .,c;::.ce, Swansea (1979).

41. PETRUSKA, G. and KATZ, I.N., Finite Element Convergence on
a Fixed Grid, Co-aT? .v i'e. p ': ->.,Vol.4, pp. 6 7- 7 1.

42. RHEINBOLDT, W.C., Adaptive Mesh Refinement Processes for

Finite Element Solutions, r-t':,,
(March 1980).

S32



I

43. RHEINBOLDT, W.C. and MESZTENYI, C.K., On a Data Structure
for Adaptive Finite Element Mesh Refinements, ACM Transaction
on Maths. Software, Vol.6, No.2, (June 1980), pp.166-187.

44. SHEPHARD, M.S., Finite Element Grid Optimization with Inter-
active Computer Graphics, Program of Computer Graphics and
Dept. of Structural Engng., Cornell University, (1980).

45. SHEPHARD, M.S., GALLAGHER, R.H. and ABEL, J.F., The Synthesis
of Near-Optimum Finite Element Meshes with Interactive
Computer Graphics, Int.J.Num.Meths.Engng., Vol.15, 1021-1039,
(1980).

46. SZABO, B.A., BASU, P.K. and ROSSOW, M.P., Adaptive Finite
Element Analysis Based on P-Convergence, NASA Conferences
Pub. 2059, pp.4 3-50, (1978).

47. SZABO, B.A. and MEHTA, A.U., P-Convergent Finite Element
Approximations in Fracture Mechanics, Int.J.Num.Meths.Engng.,
12, 551-560 (1978).

48. SZABO, B.A. and KATZ, I.N., Some Recent Developments in
Finite Element Analysis, Comp. and Maths. with Appls.,
Vol.5, pp.99-115, (1979).

49. SZABO, B.A. and DUNAVANT, D.A., An Adaptive Procedure Based
on the P-Version of the Finite Element Method, Specialists'
Conf. Inst. for Physical Sci. and Technology, University of
Maryland, (1980).

50. STRANG, G. and FIX, J.G., An Analysis of the Finite Element
Method, (1973), Prentice-Hall Inc.

51. TURCKE, D.J. and MCICEICE, G.M., Guidelines for Selecting
Finite Element Grids Based on an Optimization Study, Computers
and Structures, Vol.4, pp. 4 99-5 19 (1974).

52. TURCKE, D., On Optimum Finite Element Grid Configurations,
AAA Journal, Vol.14, (Feb. 1976).

53. WACHSPRESS, E.L., Iterative Solution of Elliptic Systems and
Applications to the Neutron Diffusion Equationc of Reaotor
Physics, Prentice-Hall Inc. (1966).

54. WACHSPRESS, E.L., Two-Level Finite Element Computations,
Ch.31, pp.877-913, Formulations a Ci Computational AZ1ori*;-s
in Finite Elements AnaZysis, Ed. Bathe, Oden Wunderlich.

55. WILSON, E.L., Finite Elements for Foundations, Joints and
Fluids, Ch.lO, Finite Elements in Geomechanics. Edited by
G.Gudehus (1977), pp.319-350.

56. WILSON, E.L., Special Numerical and Computer Techniques for
the Analysis of Finite Element Systems, Ch.l, pp.3-25,
Formulations and Computationa. AZgoritos in Finite Elemcnt
Analysis, Ed. Bathe, Oden Wunderlich.

57. ZAVE, P. and RHEINBOLDT, W., Design of an Adaptive Parallel
Finite Element System, AC! Transactio'w on ;!atzematical
'oft'ware, Vol.5, No.1, (March 1979), pp. 1 -1 7 .

58. ZIENKIEWICZ, O.C., IRONS, B.M., SCOTT, F.E. andCAMPBELL, J.S.,
High Speed Computing of Elastic Structures, Frno.,-.
;.U-posiZert of Intr7Pt ono Uuion of ' i
*"'; ..'(O" Liege (1970).

33



I!

59. ZIENKIEWICZ, O.C., The Finite Element Method, Third Edition,
McGraw-Hill (1977).

60. ZIENKIEWICZ, O.C., Numerical Methods in Stress Analysis -
The Basis and Some Recent Paths of Development. Contribution I
to a volume edited by G.S. Holister in Developments in Stress

Analysis, (1977).
61. ZIENKIEWICZ, O.C., New Paths for the Finite Element Method,

Proceedings of the Conference on Mathematics of Finite Ele-
ments and Applications III, Brunel University (1978).

62. ZIENKIEWICZ, O.C. and MORGAN, K., Finite Elements and Approxi-
mation (To appear).

34




